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ABSTRACT
Upper bounds on the left and right tails of the Poisson distribution are

given. These bounds can be easily computed in a numerically stable way, even

when the Poigson parameter is large. Such bounds can be applied to variate
generation schemes and to numerical algorithms for computing terminal rewards

of uniformizable continuous-time Markov chains.
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Let p(k) = exp(-%)'h /k! (k = 0,1,...) bhe the Poisson mass function. ?E*
1‘ Wy
. In a variety of application contexts, it is necessary to compute infinite sums !
involving these probahilities. For example, such sums occur naturally in ;%:E:
R
numerical algorithms developed for Poisson variate generation purposes and for oy

computing terminal rewards of uniformizahle continuous-time Markov chains.
From a practical standpoint, it is necessary to truncate these infinite sums
after a finite number of terms. Development of a priori error bounds on the

error incurred by this kind of truncation requires bounds on the left and

right tails of the Poisson distribution; such bounds are given here. These

bounds are easily computable in a numerically stable way, even when the

'

Poisson parameter X 1is large.
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UPPER BOUNDS ON POISSON TAIL PROBABILITIES ﬂ,ﬂ;

Peter W. Glynn

1. INTRODUCTION
Let p(k) = exp(-k)-kk/k! (k = 0,1,...) be the Poisson mass function. Our goal in
this paper is to provide upper bounds on the left and right tail probabilities, which are

defined respectively by the formulae

n
P(n) = | p(k)
k=0

Pn) = § ptx) .
1 k=n

h Such bounds have application in several numerical methods arising from the analysis of

stochastic systems.

APPLICATION 1: To generate variates from the clipped Poisson distribution, it is common to
compnute a tahle of the Poisson distribution function (see Bratley, Fox, and Schrage (1983),
p. 170-171 and p. 334-335). The numerical computation of the table requires truncating the
Poisson tail, thereby introducing numerical error. In order to bound the numerical error,

it is necessary to have a priori bounds on the probability mass of the truncated tails (see

Fox and Glynn (1986)).

APPLICATION 2: let X = {X(t) : t > 0} be a uniformizable continuous-time Markov chain

with generator Q. Given that f is a real-valued function defined on the state space

S of X, one is often interested in numerically determining the terminal reward

r = Ef(X(T)). The parameter r can be computed as

[ k
£ = 5 84T(uﬂ

(1.1) )
o k!

Ef(Y(k))

Spongored by the tinited States Army under Contract No. DAAG29-80-C-0041. This material 1s
based upon work supported by the National Science Foundation under Grant Nos. ECS-8404809
and DMS-8210950, Mod. 4.
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for & > A = sup{-Q,, : x € 8}, where Y = {Y(k) : k » 0} 4is an appropriately defined
Aiscrete-time Markov chain living on S. Gross and Miller (1984) have suggested numerical
algorithms based on the representation (1.1). Of course, from a numerical standpoint, it
is neceasary to truncate the infinite sum appearing in (1.1) at some finite quantity, say

m. The absolute error introduced by truncating (1.1) at m 4is given by

L k
Toe™t B8 pevixn] .

e(a,f) = | X1

k=m+1
Let £l = sup lf(x)] : x e 5. By observing that [|Ef(Y(x))| < 11 for x> 0, it
follows that €e(a,f) € 1€l « B(m+1); thus, for bounded functions, an explicit a priori
error bound can be calculated, provided that ;(m+1) can be bounded.
Incidentally, by letting €f£(*) = K, one finds that
sup{e(a,£) : VEl € K} = KeP(m+1)
this suggests that one should choose a so as to minimize ;km+1). Recall that ;km+1) =
p{N(aT) > m}, where N(¢) is a unit intensity Poisson process. Since N(*) has non-
decreasing paths, ;(m+1) must be non-decreasing in a. Hence, the best choice of a for

minimizing P(m#¢1) is a = A.

APPLICATIONS 3: The steady-gtate distribution of the M/M/»/ infinite-server queue with
arrival rate X and service rate u is Poisson with parameter A/u. An upper bound on
;(n) yields an upper bound on the long-run probability that such a queueing system

contains n or more customers.

In the ahove applications, an upper bound on the tails is used to determine n,4(¢),
n2(€) for which P(n1(€) < N(A) < nz(e)} 2 1 -¢, where €& 1is a prescribed error
tolerance. (In Application 2, one would generally take n1(e) = 0.) One can argue that a
straightforward method exists for choosing such an (n1(e),n2(£)) pair. Choose ny{e) =0
and let nz(e) be the first m for which P(m) > 1 -¢; the latter operation can be done
numerically by successively adding the mass probabilities p(k). This method has two

disadvantages. Firstly, the computation of n,(e) requires programming set-up time and
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expense. Secondly, for large ), the computation of the mass probabilities p(k)
involves significant numerical underflow-overflow problems; overcoming these Aifficulties
is non-trivial (see Fox and Glynn (1986)).

On the other hand, for large ), the central 1limit theorem applies to yleld

1 1
P{A + :1x/2 < N{(a) € X + zzx/z)

b (1.2)
4 * 0(z,) ~ 8(z)

-1
as X + @, where &(x) = f:, g{t)dt and g(x) = (2n) /2 exp(-xz/z). The problem in

applying (1.2) (together with a table of the normal distribution function) to obtain n,(e)

and ny(€) is that (1.2) is only true in the 1imit. PFor finite ), (1.2) gives no usable

{information. An obvious refinement would Be to combine (1.2) with the Berry-Esseen theorem

(see p. 542 of Feller (1971)). This, however, leads nowhere since the Barry-Esgeen error

bound is independent of z4 and 2z, and consequently gives no usable upper bound on the

Poigson tail probabilities.

Our error bounds avoid these difficulties. Our first result bounds the tail

orobabilities in terms of the mass function.

{1.3) PROPOSITION. Assume A > 0.

1.) If 0<n ¢Ai, then

P(n) € p(n) * (1 - (/A"

11.) 1f n > 1-1 and m?> 1, then

_ A omo~1 n+m-1
Pin) € (1 = ()t 1 e
k=n

The following cornllary is immediate.

(1.4) COROLLARY. (1) 1lim P(n)/p(n) = 1
A+

(11) 1im P(n)/pin) = 1,
n+o

According to the second part of our corollary, virtually all the mass of the Poisson

riqght tail ;(n) sits at the point n. A further consequence of (1.3) ii.) (with m = 1)
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LY
is that for o > 0,
BUIA (140 ])
. < - < 1
(1.5) 1 s (v D + 1/ ,
: which implies that
' 1 — A
! Hm ¢ POA(t4a)]) = Um $ ot (140 ])
! A A oo
- (1.6) *
: =qa - (14a)in(t+a) ;
" (1.6) is a statement of Chernoff’s large deviations theorem (see Bahadur (1971), p. 6-9)
S specialized to the Poisson distribution. Thus, (1.5) may be viewed as a refinement of
Chernoff's result.
b The bounds given by (1.3) can be used directly when XA 1is small, since p(k) can
then he evaluated without numerical difficulties arising. If A 18 large, it is useful to
N have error bounds on the mass function itself. Let a = [A].
(1.7) PROPOSITION. Let A, n > 1. Then,
1
1.) pla=n) € (27a)” 2exp(-n{n-1)/21)
-1 - - -
11.) plasn) € (2ma)” 72 exp(ip=l) , nclinlZn-l)y,
122
The normal approximation (1.2) indicates that the choices n,(s ), nz(e) will be of
1
order X/Z from A. Thus, the values of n appearing in (1.3), which are of most concern,
. 1
) are those within order A2 from A. Consequently, if ) 1is large, the factors nA
. and A/(n+1) appearing in (1.3) i.) and 1ii.) respectively will be close to one, causing
the bounds to blow up. Thus, more refined bounds are needed when X 1is large.
- {1.8) THEOREM. Suppose X > 2. TLet &(x) = &(~x) be the standard normal right tail
. probability.
t.) If n> 2,
= n=3/2
P(a~n) < exp(1/81)°(1 + %)'0(1—1/——)
. x/2
: ii.) If 2 < n < (X+3)/2,
. -1
. - 1../35. A a n=3/2
Plasn) < exp(1/80)0 (1 + L)/ 2 (1 = (grep)™) o7 —-./21.
7} (2))
2
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An obvious limitation of (1.3) 1i.) is the restriction on the size of n. However,

since one expects to use these bounds only for large X (in which case n will tend to be
1

of order 1/2), this restriction is not serious. To avold the computation of the

numerically hard-to~compute reciprocal factor in (1.8) ii.), we also offer the following

bhound.

(1.9) PROPOSITION. Suppose XA » 2. For 2 < n < (A+43)/2,

Platn) < expl1/16)s (1 + ;-)-/'5-(1 - exp(- ;—“))'1-0(“—'—3—’1@ .
(2)

Note that all the terms appearing in the upper bounds of (1.8) 1.) and (1.9) can he

easily computed in a numerically stable fashion. These bounds should therefore be suitahle

for the apnlications previously described.
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2. PROOFS

PROOF OF PROPOSITI/N 1.3:

P(n) =

For ;(n), it {s evident that

P(n) =

Solving for ;(n) vields (1.3)

Observe that

k=0 xn-k )
n-1
-k
ptr)e (1 + § (P
k=0
s -1
n(n)-kVn P = ot - D7 L
n+m-1 @
m k!
Ae o —
e p{k) + kzn plk) Tkem)
n+m—1 m <« -m
¥ optx) 2% ¥ p(x)e(nen)
k=n k=n
n+m-1
Aom—
) S
o P(K) + (=" P(n) .
it.).

The following lemma collects a series of inequalities which we shall need for the

remainder of our proofs.

(2.1) LEMMA. i.) for vy > -1,

in(1+y) < y

11.) for v 2 0, ~tn(14y) &« =y + y2/2

1/
iii.) for v > 0, (1+y)72 < YV + y/2.

PROOF, Fnr i.), let g(y) =y ~ 2n(1+y) and ohserve that g(1) = 0 and g'(y) < 0 for

-1 ¢y <N, whereas y'(y) > 0

sn Mhat  gqly) 2 g(0) = 0  for

PROOF OF PROPOSITION 1.7: For

for y > 0. MHence, 0 1is a global minimizer of gq(*),

y > =1. The proofs of ii.) and 1ii.) are similar.

1< n< a, we use the fact that a < A to obtain

—-R=
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pla-n) = pla)e (&) (3 Lyeee (2L

< pla)e (1) (1 = Pees 1 - 2210,

n-1

= p{a)rexpl T 1in(1 - ;-)) .
k=0
By (2.1) i.), In{(t = k/A) € =k/X so
n-1
pla-n) € p(a)rexp(~} k/\)
k=0

= p(a)eexp(-n(n-1)/22) ,
by a standard summation formula (see Knuth (1969), p. 55). To bound p(a), we use a
Stirling formula-type inequality (see Feller (1968), p. 54)
al > (2ma)2a% e exp(1/(12a41))

which yields (b = A-a)

-A ,a
(DY
pla) & —= —
/2na a *e
(2.2) = 1 _e™®1 4+ B2

Yana a

= -1
< ! eb'eba(zna) 72 i

Vona
the last inequality is obtained by exponentiating both sides of £&n(1+b/a) € b/a (see
(2.1) 1.)). This proves (1.7 i.) for n < a; for n > a, the inequality is trite. ~As

for p(a+n), use a > A=t to obtain

Xn
(a+1)(a+2)s** (a+n)

p(a+n) = pla)e

n
Pla) TR Tyee e (anst)

"

n=1

= pla)exp(=§ 1n(1 + £))
k=0
n-1 n-1 .2
< pla)eexp(- T ‘-;-4» LI 2) ,
k=0 k=0 2X
-7-
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the latter inequality by (2.1) ii.). Using standard summation formulae (see Xnuth (1969),

p. 55) and (2.2) qgives (1.7) ii.).

PROOF OF THEOREM 1.8: By (1.7) i.),

-1 a -
P(a-n) < (2ma) 2. E exp(- 5i—;rll)

k=n

Since g(x) = -x{x-1)/2A is non-increasing on (1/2,»),
exp(-x(x=1)/2) ¢ [* = exp(-ulu-1)/2}\)du
for x » 3/2. Thus, if n » 2,
- t@ ® 2
Pla-n) < (21a)” “Zexp(t/80)+[ _, exp(-(u-1/2)"/2)du
(2.3) 5 1
< exp(1/80) (A /a) 2T ((n-3/2)N"2) .
1
By (2.1) 111.), (3/a)’2 < 1 +b/2a. For A > 2, A< ) +1¢ A} +2-2A = ]|+
(241 x=1) ¢ |a] + (2/A1+{A] so that b/2a < 1/A; substituting into (2.3) ylelds {1.8)
i)
For (1.8) i1.), we first use (1.3) ii.) with m = a to obtain

a -1 n+a~1

Platn) € (1 - ———0)") '« | platk) .
k=n
For n € k € n+ta-1, we have
k(k~1) (k=1)k(2k=-1)
T 2
122
_k(k-1)_o
C-Tx B

where 8 = 1 - (n+a)/(3%) + (22)~', By (1.7) 1i.), it follows that

_ 2 a =1 _1/ n+a~1
(2.4) Platn) < (1 = () ) * (272) 2. ¥ exp(-k(k~1)3/24) .
k=n

As in the bound for P({a-n), the latter sum is dominated by

f:_1 exp(-u(u=1)8 /21 )du
(2.5) ; -
— - /
= exp(B/ek Yoo §— o (2n )/200((_‘\2_‘.)_ J :__) .




0

Now, B8 € 1 gince n+a > n > 2; furthermore, since n < (1+3)/2, it follows that
- -1 -
B> 1= (A/2+3/2+X)/3 + (2)"" = 1/2. Hence, 8~ 72 < /2, exp(B/@ ) < exp(1/8), and
— - - -1
s /0 < w2l ) 2y
1
Combining these inequalities and the previously obtained (X/n)/2 € (1 + 1A) with (2.4)

and (2.5), we get (1.8) ii.).

PROOF OF PROPOSITION 1.9: For X > 2, exp(1/81) € exp(1/16), so it remains only to show
that

by
a+n+1

-1 1

< (1 -.xp(-'-f—“))' .

(2.6) (1 - ¢ ™)

Since a+t > ), it follows that A/(a+n+1) € 1 = (n/(A+n)). Now,
n
1 - o < exp(~n/(A4n))
(exponentiate both sides of (2.1) 1.)), so

A a -na
(2.7) (m) < Q*P(m)

The function f£f(x) = (x-1)/(x+1) is non-decreasing on (0,%) so f(x) > f£(2) = 1/3 for

X » 2. Thus, for X 2 2, (A=1)}/(A+1) > 1/3, proving that a » (1/3)(A+1). Hence,

LY a(l + A2/2 + 3/2)—‘ > (A+1)/(3(A+41)°3/2) = 2/9. Relation (2.7) then yields

2
a+n+1

a(d+n)”

( )* < exp(-2n/9) ,

from which (2.6) follows immediately.
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